In this paper, we construct a class of indecomposable solvable Lie algebras of dimension 5 with the simplest filiform nilradicals over complex field. 摘要构造了复数域上维数为5的以最简线状李代数为幂零根基的不可分解可解李代数。
The concepts of indecomposable matrices and fully indecomposable matrices over a distributive lattice L are introduced, and some algebraic properties of them are obtained. 引入了分配格上不可分解矩阵与完全不可分解矩阵的概念;并获得了它们的一些代数性质.